Functionalized Chloroenamines in Aminocyclopropane Synthesis Part 11.1 Bicyclo[3.1.0]hexane Derivatives Preferring a Chair Conformation

Elmar Vilsmaier,* Joachim Fath, Claus Tetzlaff and Gerhard Maas
Fachbereich Chemie der Universität' Kaiserslautern, Erwin-Schrödinger-Str. D-67663 Kaiserslautern, Germany

endo-endo-3,6-Diaminobicyclo[3.1.0]hexane species 6 prefer a chair conformation. This has been established by X-ray structure analysis of derivative $6 \mathbf{c}$ and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic analysis of compounds 6a and 6b. Intramolecular hydrogen bonding in 13, the monoammonium salt of $\mathbf{6 b}$. can change the conformational situation.

A bicyclo[3.1.0]hexane skeleton generally prefers a boat conformation. ${ }^{2}$ This was shown for the parent compound 1 by a combined analysis of electron diffraction and microwave spectroscopic data ${ }^{3}$ and it was confirmed by several ab initio ${ }^{4-8}$ and semiempirical calculations. ${ }^{8,9}$ The real existence of a stable chair conformation 1C of the parent bicyclic system, however, still remains an open question

Only a few reports have appeared in the literature in which a chair conformation was given for a bicyclo[3.1.0]hexane species. The presence of a mixture of chair isomer $\mathbf{2 C}(20.5 \%)$ and boat isomer 2B (79.5%) was determined by the gas electron diffraction method in combination with molecular mechanics calculations in the case of cis-3-chlorobicyclo[3.1.0]hexane 2. ${ }^{10}$ A trans bicyclo[3.1.0]hexanol 5 should prefer a chair conformation in polar solvents at high dilution according to IR measurements of diastereomeric thujanols. ${ }^{11}$
($1 \alpha, 3 \alpha, 5 \alpha, 6 \beta$)-3,6-Diaminobicyclo[3.1.0]hexanecarbonitriles 7c, \mathbf{d} prefer a boat conformation as shown by X-ray structure analysis of 7d. ${ }^{12}$ A chair conformation was predicted for the diastereomeric $1 \alpha, 3 \beta, 5 \alpha, 6 \beta$ compounds $\mathbf{6 c}, \mathbf{d}$ as a result of the investigation of the dynamics of the N -heterocycle in the 6position of $\mathbf{6 c}, \mathbf{d}$ and $7 \mathbf{c}$, . ${ }^{12}{ }^{12}$

In this paper we confirm the presence of a chair conformation for compounds of type 6. This is done by X-ray structure analysis of $6 \mathbf{c}$ and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy of further compounds $6 \mathbf{a}, \mathbf{b}$ in comparison with the data of the diastereomeric analogues 7a,b. 6c,d did not allow a ${ }^{1} \mathrm{H}$ NMR spectroscopic determination of the conformation owing to superposition of important signals even in the 400 MHz spectra.

Results and Discussion

Preparation of further Pairs of Diastereomeric Diaminobicyclo [3.1.0] hexanes $\mathbf{6 a} / 7 \mathbf{a}$ and $\mathbf{6 b} / 7 \mathbf{b}$ and Assignment of Con-figuration.-Derivatives 6a,b and 7a,b could be obtained by the same procedures which were reported for the synthesis of $\mathbf{6 c}$, \mathbf{d} and $7 \mathbf{c}, \mathbf{d} .{ }^{12}$ Thus 3 -endo, 6 -endo-diamines $\mathbf{6 a}$ and $\mathbf{6 b}$ were available from chloroenamine 8 via bicyclohexanones 9 a and 9 b and subsequent reductive amination (yield of 6 in the reductive amination reaction: $\mathbf{6 a}, 44 \% ; \mathbf{6 b}, 51 \%$).

The corresponding 3-exo, 6 -endo-diamines $7 \mathbf{a}(41 \%$ yield) and 7 b (34%) were isolated from a chlorination-cyclopropanation sequence starting from enamine 11.

Monoammonium salts 13 and 14 were prepared from diastereomeric diamines $\mathbf{6 b}$ and $\mathbf{7 b}$ by titration with trifluoromethane sulfonic acid $\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in isopropanol) in acetonitrile.

The presence of the bicyclo[3.1.0]hexyl system in $6 / 7$ and 13/14 could be established from the ${ }^{13} \mathrm{C}$ NMR data (see Table 1). The unique endo-position of the morpholine at $\mathrm{C}(6)$ in $\mathbf{6 a} / 7 \mathbf{a}$

Scheme 1

Scheme 2

7B

6C
was indicated by the strong hindrance of the morpholine dynamics as shown by the ${ }^{1} \mathrm{H}$ NMR spectra. ΔG^{\ddagger} values of 72.4 $\mathrm{kJ} \mathrm{mol}^{-1}\left(\mathrm{OCH}_{2}\right) / 72.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{NCH}_{2}\right)$ (for $6 \mathbf{6}$) and 77.4 kJ $\mathrm{mol}^{-1}\left(\mathrm{OCH}_{2}\right) / 77.5 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\left(\mathrm{NCH}_{2}\right)$ (for 7a) for the topomerization of two methylene hydrogen atoms of the $\mathrm{C}(6)$ morpholine clearly require to be in the endo position in both cases (for assignment of configuration by this method see ref. 13 and references cited therein). Again, the dynamics of the $\mathrm{C}(6)$ morpholine are more hindered in $7 \mathbf{a}$ than in $\mathbf{6 a}$ (see ref. 12). The

Scheme 3 Reagents: i, succinimide, NaOH in acetonitrile $/ \mathrm{H}_{2} \mathrm{O}$ (10:1) for $9 \mathbf{a} ; \mathrm{NaBH}_{4}$ in acetonitrile for $9 b$; ii, $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$; iv, morpholine (10) ($\left.\mathrm{Pr}^{\mathrm{i}} \mathrm{O}\right)_{4} \mathrm{Ti}$; v, $\mathrm{NaBH}_{3} \mathrm{CN}$

Scheme 4 Reagents: i, N-chlorosuccinimide 12; ii, succinimide, NaOH in acetonitrile $/ \mathrm{H}_{2} \mathrm{O}(10: 1)$ for $7 \mathbf{a} ; \mathrm{NaBH}_{4}$ in acetonitrile for $7 \mathbf{7 b}$; iii, $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$; iv, $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}$

13

Scheme 5 Reagent: i, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$
$\mathrm{C}(6)$ configuration of $\mathbf{6 b} / 7 \mathbf{b}$ was determined by ${ }^{3} J_{Y . X X}$, coupling in the ${ }^{1} \mathrm{H}$ NMR spectra (see ref. 14). The ${ }^{3} \mathrm{H}_{\mathrm{HH}}$ values found for $\mathbf{6 b} / 7 \mathbf{b}(6.9 \mathrm{~Hz}), \mathbf{1 3}\left(6.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$ and $\mathbf{1 4}\left(6.8 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right)$ are consistent with a 6 -endo-morpholine configuration.

The localization of the proton on monoprotonation of the diamines 6 b and 7 b could be recognized by a change of ${ }^{1} J_{\mathrm{CH}}$ coupling of the involved $\mathrm{N}-\mathrm{C}-\mathrm{H}$ moiety in the ${ }^{13} \mathrm{C}$ NMR spectrum. In all cases protonation increased $\mathrm{C}(3)-\mathrm{H}$ coupling by about 10 Hz with almost no change of $\mathrm{C}(6)-\mathrm{H}$ coupling (Table 1) indicating the protonation of the $\mathrm{C}(3)$-morpholine (see ref. 15). This is not unexpected since $\mathrm{C}(6)$ morpholine should be less basic owing to steric and electronic effects (e.g. cyclopropylamine: $\mathrm{p} K_{\mathrm{a}}=9.10 ;{ }^{16}$ isopropylamine: $\mathrm{p} K_{\mathrm{a}}=$ 10.67^{16}).

The $C(3)$ configuration of bicyclohexyldiamines $\mathbf{6 a}, \mathbf{b}$ and $\mathbf{7 a}$, b could be determined by the chemical shift of the $\mathrm{C}(3){ }^{13} \mathrm{C}$ NMR signal in comparison with the analogous values of $\mathbf{6 c}, \mathbf{d}$ and 7c, d and in combination with the X-ray structural analysis of compound 7d (3α-isomer). ${ }^{12}$

A difference of about $8-10 \mathrm{ppm}$ was found for the $\mathrm{C}(3){ }^{13} \mathrm{C}$

Fig. 1 ORTEP representation of $\mathbf{6 c}$ with the atom-labelling scheme. Ellipsoids are scaled to enclose 30% of the electron density.

Fig. 2 Torsion of the $\mathrm{C}(3)$-morpholine bond; dihedral angles $\mathrm{H}(3)$ -$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(8)$ and $\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(11)$

NMR signals within each pair of diastereomeric compounds $\mathbf{6 a} / 7 \mathbf{a}(\Delta \delta 8.3), \mathbf{6 b} / 7 \mathbf{b}(\Delta \delta 9.5), \mathbf{6 c} / 7 \mathbf{c}(\Delta \delta 8.3)^{12}$ and $\mathbf{6 d} / 7 \mathbf{d}$ ($\Delta \delta 8.4$). ${ }^{12}$ Thus, the $\mathrm{C}(3)$ signal of 3β-isomers 6 appeared uniformly at about 75 ppm ; a highfield shifting of the $\mathrm{C}(3)$ signal to about 67 ppm was characteristic of 3α-isomers 7 . It is known that the protonation of an amino moiety is accompanied by almost no shift of the α-carbon ${ }^{13} \mathrm{C}$ NMR signals. ${ }^{17}$ This is found for $\mathbf{7 b} / 14$ in CDCl_{3} and $\mathrm{CD}_{3} \mathrm{CN}$ (see Table 1). $\mathbf{6 b} / \mathbf{1 3}$ gave an analogous result only in CDCl_{3}; in $\mathrm{CD}_{3} \mathrm{CN}$, however, the protonation of $\mathbf{6 b}$ generating 13 causes a highfield shifting of the $\mathrm{C}(3)$ signal by $7.8 \mathrm{ppm} .{ }^{1} \mathrm{H}$ NMR spectroscopy showed that a change of conformation is responsible for this phenomenon.
X-Ray Structure Analysis of $\mathbf{6 c}$.-Suitable single crystals could be obtained for $3 \beta, 6 \beta$-diaminobicyclohexane- 6 -carbonitrile 6 c whose preparation is described in ref. 12. Using morpholine instead of piperidine as the amine component should not interfere with a direct comparison of the bicyclo[3.1.0]hexane structural data of both compounds $\mathbf{6 c}$ and $7 \mathbf{d}$ (for an X-ray plot of the $3 \alpha, 6 \beta$-diaminobicyclohexanecarbonitrile 7d see ref. 12).

The X-ray structure analysis of $\mathbf{6 c}$ clearly demonstrated the presence of a chair conformation for the bicyclo[3.1.0]hexane skeleton. The value of 147.6° for the interplanar angle between $C(1) C(2) C(4) C(5)$ and $C(2) C(3) C(4)$ shows a clear buckle of the annulated five-membered ring (ring buckle $\alpha=-32.4^{\circ}$).

Comparing the X-ray structural analyses of the two compounds 6 c and 7d indicates that, in a bicyclo[3.1.0]hexane system, the conformation has no influence on the $\mathrm{C}-\mathrm{C}$ distances of the cyclopropane system (see Table 2). This disproves an idea of Okazaki, Niwa and Kato ${ }^{4}$ who based the preference for the boat conformation of a bicyclo[3.1.0]hexane skeleton on the

Table $1{ }^{13} \mathrm{C}$ NMR data of the aminobicyclo[3.1.0]hexane derivatives $\mathbf{6 a}, \mathbf{6 b}, 7 \mathbf{7 a}, 7 \mathbf{b}, 9 \mathrm{a}, 9 \mathrm{~m}, 13$ and $14 \delta(100.62 \mathrm{MHz}), J$ in [] (Hz)

Morpholine					Bicyclo[3.1.0]hexane			
$\mathrm{C}(2,6)$		$C(3,5)$			C(3)	$\mathrm{C}(2,4)$	$\mathrm{C}(1,5)$	C(6)
$69^{a, b}$	66.9	66.8	51.6	49.8	75.3	27.0	29.6	60.0
					[132]		[170]	
$6 \mathrm{~b}^{\text {a }}$	66.8	66.7	52.6	51.2	76.3	24.5	21.0	49.3
					[135]		[168]	[163]
$\begin{aligned} & \mathbf{6} \mathbf{b}^{c} \\ & 7 \mathbf{a}^{\text {a.d }} \end{aligned}$	67.4	67.4	53.4	52.5	77.6	25.8	21.8	50.2
	67.1	66.8	52.4	50.5	67.0	31.3	30.4	56.8
					[139]		[172]	
$7 b^{a}$	66.8	66.6	53.4	52.1	66.8	30.0	21.3	45.3
					[139]		[167]	[162]
$7{ }^{\text {c }}$	67.5	67.4	54.4	53.1	67.7	30.8	22.2	46.4
					[139]		[166]	[161]
$99^{\text {a.e }}$	66.0		49.8		211.7	37.4	24.6	55.8
							[175]	
$9 \mathrm{~b}^{\text {a }}$	66.4		52.5		213.8	36.4	16.4	43.7
							[173]	[167]
$13{ }^{a}$	66.4	64.1	52.9	50.7	73.1	24.2	20.9	48.6
	[142]	[147]	[134]	[143]	[144]		[170]	[163]
$13{ }^{\text {c }}$	66.1	64.8	53.8	51.6	69.8	27.0	22.2	47.9
	[143]	[146]	[137]	[143]	[150]		[172]	[169]
14^{a}	67.1	63.6	53.7	51.9	68.7	28.4	20.8	44.8
	[143]	[148]	[134]	[144]	[151]		[172]	[165]
$14^{\text {c }}$	67.1	64.3	54.1	52.1	68.2	28.8	21.2	45.1
	[141]	[143]	[133]	[145]	[154]		[171]	[169]

${ }^{a} \mathrm{CDCl}_{3} .{ }^{b}$ Succinimide: 177.6, 27.8. ${ }^{c} \mathrm{CD}_{3} \mathrm{CN} .{ }^{d}$ Succinimide: 177.7, 27.8. ${ }^{e}$ Succinimide: 177.6, 27.8.

Table 2 Selected bond distances, torsional angles and interplanar angles of $1 \alpha, 3 \beta, 5 \alpha, 6 \beta$-3,6-dimorpholinobicyclo[3.1.0] hexane-6-carbonitrile 6 c compared with the corresponding data for the analogous $3 x$ compound 7d (from ref. 12) ${ }^{a}$

	$\mathbf{6 c}$	7d
Bond lengths (\AA)		
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.488(3)$	$1.481(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.503(3)$	$1.508(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.502(3)$	$1.509(2)$
$\mathrm{C}(6)-\mathrm{N}(3)$	$1.425(2)$	$1.412(1)$
$\mathrm{C}(3)-\mathrm{N}(1)$	$1.455(3)$	$1.466(1)$
Torsional angles $\left(^{\circ}\right)$		
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)_{\mathrm{M}}$	-110.59	-80.6
$\mathrm{H}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)_{\mathrm{N}}$	11.16	37.9
$\mathrm{H}(2)_{\mathrm{M}}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	159.21	-27.6
$\mathrm{H}(2)_{\mathrm{N}}-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	38.90	-147.6
Interplanar angles $\left(^{\circ}\right)$		
$\mathrm{C}(1) \mathrm{C}(5) \mathrm{C}(6)-\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(4) \mathrm{C}(5)$	112.5	67.8
$\mathrm{C}(1) \mathrm{C}(2) \mathrm{C}(4) \mathrm{C}(5)-\mathrm{C}(2) \mathrm{C}(3) \mathrm{C}(4)$	147.6	21.6

${ }^{a}$ The terms $\mathrm{H}(2)_{\mathrm{M}}, \mathrm{H}(4)_{\mathrm{M}}$ and $\mathrm{H}(2)_{\mathrm{N}}, \mathrm{H}(4)_{\mathrm{N}}$ were used in Table 2 instead of $\mathrm{H}(2)_{A}, \mathrm{H}(4)_{A}$ and $\mathrm{H}(2)_{B}, \mathrm{H}(4)_{\mathrm{B}}$ for better comparison with the other spectroscopic data, respectively. The latter designation is found in the deposited data. $\mathrm{H}(2)_{M} / \mathrm{H}(4)_{M}$ are in the endo position and $\mathrm{H}(2)_{\mathrm{N}} / \mathrm{H}(4)_{\mathrm{N}}$ are in the exo position of the bicyclo[3.1.0]hexane system.
interaction of the HOMO of the $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{eq}) / \mathrm{C}(4)-\mathrm{H}(4 \mathrm{eq})$ bonds with the $\mathrm{C}(1)-\mathrm{C}(5)$ antibonding cyclopropane orbital. A distinctly longer $\mathrm{C}(1)-\mathrm{C}(5)$ bond would be expected for 7 d with respect to $\mathbf{6 c}$ if this were correct. Unexpectedly, different $\mathbf{C}(3)$ configurations of $6 \mathbf{c}$ and $7 \mathbf{d}$ did not affect the distance between the two amino groups $[\mathrm{N}(2)-\mathrm{N}(3)$ distance: $\mathbf{6 c}, 4.28 \AA ; 7 \mathbf{d}$, $4.34 \AA$].
The steric repulsion of the two $s y n$ morpholine moieties in the diamine 6 c is clearly decreased by adopting a chair conformation 6 cC with an equatorial orientation of the large substituent in $\mathrm{C}(3)$ position. This should be the main reason for
the chair conformation of compounds of type 6. Unfavourable interaction of the two nitrogen lone pairs is additionally minimized by an almost perpendicular arrangement of the two morpholine rings. The torsion of the $\mathrm{C}(3)$-morpholine bond can be expressed by the dihedral angles $\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(8)$ and $\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(11)$ (see Fig. 2).

Assignment of Conformation of the Diastereomeric Diamines 6 and 7 and their Monoprotonated Species 13/14 by ${ }^{1} \mathrm{H} N M R$ Spectroscopy.-The diastereomeric diamines 6a/7a and 6b/7b and their monoprotonated species $13 / 14$ gave well separated ${ }^{1} \mathrm{H}$ NMR signals for all hydrogen atoms of the bicyclic system. The coupling constants of the corresponding hydrogen atoms were ascertained from the spectra. This allowed the determination of conformation of compounds $6,7,13$ and 14 . In the case of $\mathbf{6 a} / \mathbf{6 b}$ the correctness of the experimentally obtained data was checked by simulation of the ${ }^{1} \mathrm{H}$ NMR spectra by the LAOKOON III program ${ }^{18}$ (Table 3).

The coupling between endo hydrogen atoms $\mathrm{H}(2)_{\mathrm{M}} / \mathrm{H}(4)_{\mathrm{M}^{\prime}}$ and the bridgehead hydrogen atoms $H(1)_{\mathbf{x}} / H(5)_{x^{\prime}}$, served as the simplest indicator for the conformation of the bicyclic system: A 'zero coupling' between these hydrogen atoms, characteristic of a boat conformation of a bicyclo[3.1.0]hexane system, ${ }^{19}$ could be observed for diamines 7a,b. In contrast, the $H(2)_{M} / H(4)_{M}{ }^{1} H$ NMR signal of the analogous diastereomers 6a,b gave a clear splitting by the vicinal $H(1)_{\mathbf{x}} / H(5)_{x^{\prime}}$ atoms (Tables 3 and 4) indicating a chair conformation.

Knowledge of the $\mathrm{C}(3)$ configuration (X-ray structure analyses of $\mathbf{6 c}$ and 7d, ${ }^{13} \mathrm{C}$ NMR data) also allowed assignment of conformation of compounds $6,7,13$ and 14 via the magnitude of the coupling of $\mathrm{H}(3)_{A}$ with $\mathrm{H}(2)_{M} / \mathrm{H}(4)_{M^{\prime}}$ and $\mathrm{H}(2)_{\mathrm{N}} / \mathrm{H}(4)_{\mathrm{N}^{\prime}}$. Independently of the solvent, $\mathbf{6 a , b}, 7 \mathbf{a}, \mathbf{b}$ and 14 showed relatively large coupling constants $J_{3,2 \mathrm{M}} / J_{3,4 \mathrm{M}^{\prime}}$ and $J_{3,2 \mathrm{~N}} / J_{3,4 \mathrm{~N}}$ indicating an axial $\mathrm{C}(3)-\mathrm{H}$ bond in each case (chair conformation of 6 and boat conformation of 7 and 14). The $J_{3,2 \mathrm{M}} / J_{3,4 \mathrm{M}^{\prime}}$ coupling of monoammonium salt $\mathbf{1 3}$ was differing markedly in chloroform and in acetonitrile. An axial C(3)-H moiety (= chair conformation of 13) is present only in chloroform $\left(J_{3.2 \mathrm{M}} / J_{3.4 \mathrm{M}^{\prime}}=8.8 \mathrm{~Hz}\right)$. In acetonitrile, however, a coupling constant $J_{3,2 \mathrm{M}} / J_{3,4 \mathrm{M}^{\prime}}=2.6 \mathrm{~Hz}$ was found. Such a small coupling requires an equatorial $\mathrm{C}(3)-\mathrm{H}$ moiety and consequently the existence of a boat conformation due to the known $\mathrm{C}(3)-\beta$-configuration of $\mathbf{1 3}$ [e.g. analogous coupling for $\mathbf{2}$ with its equatorial $\mathrm{C}(3)-\mathrm{H}$ unit: 1.8 Hz$].{ }^{19}$
In accordance with this, 13 gave a small, but clear $J_{1,2 \mathrm{M}} / J_{5,4 \mathrm{M}^{\prime}}$ coupling in CDCl_{3} (chair conformation) and no $J_{1,2 \mathrm{M}} / J_{5.4 \mathrm{M}}$ coupling in acetonitrile (boat conformation)(Fig. 3 and Table 4).

Intramolecular $\mathrm{N}-\mathrm{H}-\mathrm{N}$ hydrogen bonding should be the reason for the boat conformation of $\mathbf{1 3}$. It is well known that acetonitrile is more suited for intramolecular $\mathrm{N} \cdots \mathrm{H} \cdots \mathrm{N}$ hydrogen bonding in monoprotonated diamines. ${ }^{20}$ In chloroform, however, the $\mathrm{C}(3)$-morpholine $\mathrm{N}-\mathrm{H}$ unit interacts with the anion rather than with the $\mathrm{C}(6)$-morpholine moiety due to a tight ion pair. X-Ray structural evidence for the competing interaction of an ammonium $\mathrm{N}-\mathrm{H}$ moiety with the anion or with a second intramolecular amino function has been reported in the literature. ${ }^{21,22}$
$\mathrm{N}-\mathrm{H}-\mathrm{N}$ hydrogen bonding in 13B in acetonitrile was also indicated by the downfield shifting of the $\mathrm{H}(6)_{\mathrm{Y}}$ signal from 1.79 ppm in CDCl_{3} to 1.95 ppm in $\mathrm{CD}_{3} \mathrm{CN}$. The diastereomeric monoammonium salt 14 gave no shifting of the $\mathrm{H}(6)_{\mathrm{Y}}$ signal upon using different solvents (see Table 4).

Conformational investigations of the monoammonium salt 13 pointed out that determination of $\mathrm{C}(3)$ configuration in compounds of type $6,7,13$ and 14 via the chemical shift of the $\mathrm{C}(3){ }^{13} \mathrm{C}$ NMR signal must be applied carefully. The δ_{C} value of the $C(3)$ atom of $6,7,13$ and 14 is influenced by the

Table $3{ }^{1} \mathrm{H}$ NMR data of the dimorpholinobicyclo[3.1.0]hexylpyrrolidinedione diastereomers 6 a and $7 \mathrm{a} \delta\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, J \text { in } \mathrm{Hz}\right)^{a, b}$

	Bicyclohexane ${ }^{\text {c }}$								
	$\mathrm{H}(1)_{\mathrm{x}}$	$\mathrm{H}(2)_{\mathrm{M}}$	$\mathrm{H}(2)_{\mathrm{N}}$	$\mathrm{H}(3){ }_{\text {A }}$	$J_{1,2 \mathrm{M}}$	$J_{1,2 \mathrm{~N}}$	$J_{2 \mathrm{M}, 3}$	$J_{2 \mathrm{~N}, 3}$	$J_{1,5}$
	$\mathrm{H}(5) \mathrm{x}^{\prime}$	$\mathrm{H}(4)_{\mathrm{M}^{\prime}}$	$\mathrm{H}(4)_{\mathrm{N}}{ }^{\text {, }}$		$J_{5,4 \mathrm{M}^{\prime}}$	$J_{5,4 \mathrm{~N}^{\prime}}$	$J_{4 \mathrm{M}^{\prime}, 3}$	$J_{4 \mathrm{~N}^{\prime} .3}$	
6a	1.72	1.55	2.08	3.20	1.5	6.5	10.3	7.9	8.5
7a	1.82	2.14	1.96	3.04	0	4.0	8.5	8.0	8.0
	6-C-Morpholine ${ }^{\text {d }}$							3-C-Morpholine ${ }^{\text {d,e }}$	
	$\mathrm{H}(2){ }_{\text {A }}$	$\mathrm{H}(2)_{\mathrm{B}}$	$\mathrm{H}(3)_{x}$	H(3) ${ }_{\mathbf{Y}}$	$J_{2 \mathrm{~A}, 2 \mathrm{~B}}$	$J_{2 \mathrm{~B}, 3 \mathrm{Y}}$	$J_{3 \mathrm{X}, 3 \mathrm{Y}}$	$\mathrm{H}(2)_{\mathrm{A} . \mathrm{A}^{\prime}}$	$\mathrm{H}(3)_{\mathrm{x} . \mathrm{x}^{\prime}}$
	$\mathrm{H}(6)_{\text {A }}$	$\mathrm{H}(6)_{\mathrm{B}}$	$\mathrm{H}(5)_{\mathrm{X}}$	$\mathrm{H}(5)_{\mathbf{Y}}$	$J_{6 \mathrm{~A} .6 \mathrm{~B}}$	$J_{6 \mathrm{~B}, 5 \mathrm{Y}}$	$J_{5 \mathrm{X}, 5 \mathrm{Y}}$	$\mathrm{H}(6)_{\mathrm{A}, \mathrm{A}^{\prime}}$	$\mathrm{H}(5)_{\mathrm{x} . \mathrm{X}^{\prime}}$
6a	3.76	3.54	2.76	2.44	10.9	11.7	12.0	$3.70{ }^{\text {A }}$	2.50
7a	3.75	3.50	2.82	2.43	11.4	11.4	12.1	3.72	2.45

${ }^{a}$ Coupling constants J were determined by decoupling experiments and optimized by simulation of the ${ }^{1} \mathrm{H}$ NMR spectra by the LAOKOON-III program; ${ }^{18}$ the coupling between $\mathrm{H}(1)_{\mathrm{X}}$ and $\mathrm{H}(5)_{\mathbf{x}^{\prime}}\left(\mathrm{XX}^{\prime}\right.$ coupling of the $\mathrm{AMM}^{\prime} \mathrm{NN}^{\prime} \mathrm{XX}^{\prime}$ system) is essential for a correct simulation of the spectra.
${ }^{b}$ Succinimide (4 H , two broad, unsplit signals): 6a: 2.61, 2.74; 7a: 2.61, 2.73. ${ }^{c}$ Numbers of atoms correspond to the usual counting in a bicyclo[3.1.0] hexane system; $\mathrm{H}(2)_{\mathrm{M}}$ and $\mathrm{H}(4)_{\mathrm{M}^{\prime}}$ are in the endo position and $\mathrm{H}(2)_{\mathrm{N}}$ and $\mathrm{H}(4)_{\mathrm{N}^{\prime}}$ are in the exo position of the bicyclic skeleton.
${ }^{d}$ Numbers of atoms correspond to the usual numbering in a morpholine system. ${ }^{e} \mathbf{A A}^{\prime} \mathbf{X X}^{\prime}$ system

Table $4{ }^{1} \mathrm{H}$ NMR chemical shifts of $\mathrm{H}(3)_{\mathrm{A}}$ and $\mathrm{H}(2)_{\mathrm{M}} / \mathrm{H}(4)_{\mathbf{M}^{\prime}}$ and selected coupling constants ${ }^{3} J_{\mathbf{H H}}$ of the 3,6-diaminobicyclo[3.1.0]hexane diastereomers $6 / 7$ and their monoammonium salts $13 / 14, \delta, J \mathrm{in} \mathrm{Hz}$

Compound	Solvent	H(3) ${ }_{\text {A }}$	$\begin{aligned} & { }^{3} J_{\mathrm{AM}^{\prime}} \\ & { }^{3} J_{\mathrm{AM}^{\prime}} \end{aligned}$	$\begin{aligned} & { }^{3} J_{\mathrm{AN}^{\prime}} \\ & { }^{3} J_{\mathrm{AN}^{\prime}} \end{aligned}$	$\begin{aligned} & \mathrm{H}(2)_{\mathrm{M}} \\ & \mathrm{H}(4)_{\mathrm{M}^{\prime}} \end{aligned}$	$\begin{aligned} & { }^{3} J_{\mathrm{MX}} \\ & { }^{3} J_{\mathrm{M}^{\prime} \mathbf{X}^{\prime}} \end{aligned}$	$\mathrm{H}(6)_{Y}$
6b	CDCl_{3}	3.12	10.5	8.1	1.78	1.4	1.60
6b	$\mathrm{CD}_{3} \mathrm{CN}$	3.04	10.6	7.8	1.62	1.6	1.31
7b	CDCl_{3}	2.94	7.7	7.7	1.88	0	1.57
7b	$\mathrm{CD}_{3} \mathrm{CN}$	2.90	7.7	7.7	1.84	0	1.51
13	CDCl_{3}	3.80	8.9	8.1	1.75	1.8	1.79
13	$\mathrm{CD}_{3} \mathrm{CN}$	3.60	2.6	8.6	2.06	0	1.94
14	CDCl_{3}	3.69	8.0	8.3	2.06	0	1.66
14	$\mathrm{CD}_{3} \mathrm{CN}$	3.83	8.0	8.3	2.18	0	1.64

Fig. $3{ }^{1} \mathbf{H}$ NMR signals of the bicyclo[3.1.0]hexyl system of the monoammonium salt 13 in chloroform; $\mathbf{H}(2)_{M} / H(4)_{M^{\prime}} H(2)_{N} / H(4)_{N}$ signals in acetonitrile

conformation rather than by the 3α or 3β structure of these bicyclo[3.1.0]hexane compounds. In a boat conformation, the $\mathrm{C}(3)$ atom is located above the cyclopropane ring and is influenced by its anisotropic effect (for ${ }^{1} \mathrm{H}$ NMR highfield shifting by a cyclopropane system see ref. 23).

Conclusion

A heterocyclic amino function in the 3 -position of a 6 -endoaminobicyclo[3.1.0]hexane skeleton prefers an equatorial position. The presence of this anchoring group leads to a chair conformation for 3β-diastereomers 6 and to a boat conform-
ation of 3α-diastereomers 7. In the case of 3β-monoammonium salt $\mathbf{1 3}$, intramolecular hydrogen bonding can surpass the effect of the anchoring group. 13 represents the first bicyclo[3.1.0]hexane species for which a solvent dependent preference for a boat or a chair conformation could be clearly established.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AM 400 spectrometer, $\mathrm{Me}_{4} \mathrm{Si}$ was used as internal standard. J-Values are in Hz. IR spectra were measured with a PerkinElmer 397 Infrared Spectrophotometer. Microanalyses were performed with a Perkin-Elmer 2400 Elemental Analyzer. Melting points were taken using a Mettler FP 61 apparatus and are uncorrected. A Büchi B-680 Chromatography System was used for the MPLC separations, B-685 column, $\phi: 26 \mathrm{~mm}$, length: 460 mm ; Büchi UV-VIS Filter Photometer as detector, 254 nm .

1-\{(1 $1 \alpha, 5 \alpha, 6 \alpha)$-6-Morpholino-3-oxobicyclo[3.1.0]hex-6-yl\}pyr-rolidine-2,5-dione 9a.-A mixture of sodium hydroxide (0.40 g , $10 \mathrm{mmol})$ and succinimide $(0.99 \mathrm{~g}, 10 \mathrm{mmol})$ was added to a solution of chloroenamine 8^{12} in acetonitrile $\left(60 \mathrm{~cm}^{3}\right)$ and water $\left(6 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 2 h at $60^{\circ} \mathrm{C}$. Then the solvent was removed in vacuo and the residue was dissolved in chloroform ($40 \mathrm{~cm}^{3}$). Cleavage of the ketal function was achieved by addition of aqueous hydrochloric acid ($6 \mathrm{~mol} \mathrm{dm}^{-3}$, $4 \mathrm{~cm}^{3}$) and stirring for 2 h at room temperature. Addition of sodium hydroxide ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 40 \mathrm{~cm}^{3}$) and extraction with chloroform $\left(3 \times 25 \mathrm{~cm}^{3}\right)$ gave crude 9 a which was washed with methanol ($2 \times 25 \mathrm{~cm}^{3}$) and purified by recrystallization from acetonitrile ($60 \mathrm{~cm}^{3}$). Yield $1.38 \mathrm{~g}(49 \%)$, m.p. $229^{\circ} \mathrm{C}$ (decomp.) (Found: C, $60.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 10.0 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 60.42; $\mathrm{H}, 6.52 ; \mathrm{N}, 10.07 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745$ and $1710(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.97\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X} 1 \mathrm{X}^{\prime}}\right), 2.38\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{NN}}{ }^{\prime}\right), 2.63\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{MM}^{\prime}}\right)$ (MM'NN'XX'-system, carbocycle), $2.73(4 \mathrm{H}$, br s, succinimide), $2.44\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Y}}\right), 2.75\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X} 2}\right), 3.42\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}\right)$ and 3.66 ($2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}$) (ABXY-system, morpholine).
($1 \alpha, 5 \alpha, 6 \beta$)-6-Morpholinobicyclo[3.1.0]hexan-3-one $9 \mathbf{b} .-\mathrm{A}$ mixture of chloroenamine $\mathbf{8}^{12}(6.23 \mathrm{~g}, 25 \mathrm{mmol})$ and sodium borohydride $(9.08 \mathrm{~g}, 250 \mathrm{mmol})$ in acetonitrile $\left(300 \mathrm{~cm}^{3}\right)$ was stirred at $60^{\circ} \mathrm{C}$ for 5 d . The solid was removed by centrifugation and the solvent of the clear solution was evaporated in vacuo. The ketal was cleaved by addition of aqueous hydrochloric acid ($4 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 30 \mathrm{~cm}^{3}$) and stirring at room temperature for 1 h . Addition of aq. sodium hydroxide ($5 \mathrm{~mol} \mathrm{dm} \mathrm{dm}^{-3}, 30 \mathrm{~cm}^{3}$) and extraction with dichloromethane $\left(6 \times 20 \mathrm{~cm}^{3}\right)$ gave crude 9 b which was purified by distillation in a Kugelrohr apparatus (b.p. $150^{\circ} \mathrm{C} / 0.001$ Torr). In the case of uncomplete solvolysis the solvolytic procedure was repeated. Yield $1.89 \mathrm{~g}\left(44 \%\right.$), m.p. $50^{\circ} \mathrm{C}$ (Found: C, $66.2 ; \mathrm{H}, 8.6 ; \mathrm{N}, 7.9$. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 66.27 ; \mathrm{H}, 8.34 ; \mathrm{N}, 7.73 \%$) $v_{\text {max }}(\mathrm{KBr})$ / $\mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.54\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{XX}}\right), 1.89\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Y}}\right.$, $\left.J_{\mathrm{XY}} 6.4\right), 2.15\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{NN}^{\prime}}\right), 2.50\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{MM}^{\prime}}\right)\left(\mathrm{MM}^{\prime} \mathrm{NN}^{\prime} \mathrm{XX}^{\prime} \mathrm{Y}-\right.$ system, carbocycle), $2.47(4 \mathrm{H}), 3.59(4 \mathrm{H})$ (broad unsplit signals, morpholine).
$(1 \alpha, 3 \beta, 5 \alpha)-3,6$-Diaminobicyclo[3.1.0]hexane Derivatives $\mathbf{6 a}$, b.-General procedure. A mixture of bicyclohexanone 9 (2.0 $\mathrm{mmol}, 9 \mathrm{a}: 0.56 \mathrm{~g}, 9 \mathrm{~b}: 0.36 \mathrm{~g})$, morpholine $10(0.17 \mathrm{~g}, 2.0 \mathrm{mmol})$ and titanium tetraisopropoxide $(1.14 \mathrm{~g}, 4.0 \mathrm{mmol})$ was stirred for 1 h at room temperature. Sodium cyanoborohydride $(0.13 \mathrm{~g}$, $2.0 \mathrm{mmol})$ and ethanol $\left(20 \mathrm{~cm}^{3}\right)$ were added and stirring was continued for 24 h . Water ($20 \mathrm{~cm}^{3}$) was added, the solid was removed by suction, and the remaining solution was concentrated to a volume of $20 \mathrm{~cm}^{3}$. Excess sodium borohydride was destroyed by addition of aq. hydrochloric acid $(12.5 \mathrm{~mol}$
$\mathrm{dm}^{-3}, 4 \mathrm{~cm}^{3}$) and stirring for 1 h at room temperature. Basification with aq. sodium hydroxide ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 30 \mathrm{~cm}^{3}$), extraction with dichloromethane $\left(4 \times 20 \mathrm{~cm}^{3}\right)$ and evaporation of the solvent gave crude diamines $\mathbf{6 a}, \mathbf{b} .6 \mathbf{a}$ was recrystallized from methanol ($30 \mathrm{~cm}^{3}$) at $-18^{\circ} \mathrm{C} ; \mathbf{6 b}$ was distilled in a Kugelrohr apparatus (b.p. $100^{\circ} \mathrm{C} / 0.0001$ Torr) and was crystallized from diethyl ether ($30 \mathrm{~cm}^{3}$) at $-18^{\circ} \mathrm{C}$.
$1-\{(1 \alpha, 3 \beta, 5 \alpha, 6 \alpha)-3,6$-Dimorpholinobicyclo $[3.1 .0]$ hex-6-yl $\}-$ pyrrolidine-2,5-dione 6a. Yield $0.31 \mathrm{~g}(44 \%)$, m.p. $191^{\circ} \mathrm{C}$ (Found: C, $61.6 ; \mathrm{H}, 7.7 ; \mathrm{N}, 12.0 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C , $61.87 ; \mathrm{H}, 7.79 ; \mathrm{N}, 12.03 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O})$.

4,4'-\{(1 $, 3 \beta, 5 \alpha, 6 \beta)$-Bicyclo[3.1.0]hexane-3,6-diyl $\}$ dimorpholine 6b. Yield $0.26 \mathrm{~g}(51 \%)$, m.p. $106^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 66.0 ; \mathrm{H}, 9.4$; $\mathrm{N}, 11.2 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.63 ; \mathrm{H}, 9.59 ; \mathrm{N}, 11.10 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X} 1 \mathrm{X} 1^{\prime}}\right), 1.31\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{MM}^{\prime}}\right), 1.60\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Y}}\right.$, $\left.J_{\mathrm{X}, \mathrm{Y}} 6.9\right), 1.78\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{NN}^{\prime}}\right), 3.12\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{A} 1}\right)\left(\mathrm{AMM}^{\prime} \mathrm{NN}^{\prime} \mathrm{XX}^{\prime} \mathrm{Y}\right.$ system, carbocycle), $2.43\left(8 \mathrm{H}, \mathrm{H}_{\mathrm{X} 2}, \mathrm{H}_{\mathrm{x} 3}\right)$ and $3.63\left(8 \mathrm{H}, \mathrm{H}_{\mathrm{A} 2}\right.$, $\mathrm{H}_{\mathrm{A} 3}$) ($\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ systems, morpholines).
(1 $\alpha, 3 \alpha, 5 \alpha)-3,6$-Diaminobicyclo[3.1.0]hexane Derivatives 7a, b.-A solution of N-chlorosuccinimide $12(1.34 \mathrm{~g} ; 10 \mathrm{mmol})$ in dichloromethane $\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise over 1 h at $-25^{\circ} \mathrm{C}$ to a solution of enamine $11^{12}(2.52 \mathrm{~g}, 10 \mathrm{mmol})$ in dichloromethane ($60 \mathrm{~cm}^{3}$). The mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$, then the cooling bath was removed and stirring was continued for 2 h . After removal of the solvent the crude chloroenamine was extracted with pentane $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ at $35^{\circ} \mathrm{C}$. Crude chloroenamine was obtained by evaporation of pentane; its reaction with succinimide or sodium borohydride and work-up was done in an analogous fashion to that described for the synthesis of $\mathbf{6 a}$ and $\mathbf{6 b}$. $\mathbf{7 b}$ was purified by MPLC (silica gel, diethyl ether as solvent) instead of distillation.

1-\{(1 $\alpha, 3 \alpha, 5 \alpha, 6 \alpha)-3,6-$ Dimorpholinobicyclo[3.1.0]hexan-6-yl\}-pyrrolidine-2,5-dione 7a. Yield $1.44 \mathrm{~g}(41 \%)$, m.p. $226^{\circ} \mathrm{C}$ (decomp.) (Found: C, $61.6 ; \mathrm{H}, 7.6 ; \mathrm{N}, 12.0 . \mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.87 ; \mathrm{H}, 7.79 ; \mathrm{N}, 12.03 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O})$.
$4,4^{\prime}-\{(1 \alpha, 3 \alpha, 5 \alpha, 6 \beta)$-Bicyclo[3.1.0]hexane-3,6-diyl \}dimorpholine $7 \mathbf{b}$. Yield $0.86 \mathrm{~g}(34 \%)$, m.p. $62^{\circ} \mathrm{C}$, b.p. $120^{\circ} \mathrm{C} / 0.005$ Torr (Found: $\mathrm{C}, 66.5 ; \mathrm{H}, 9.5 ; \mathrm{N}, 11.0 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , $66.63 ; \mathrm{H}, 9.59 ; \mathrm{N}, 11.10 \%) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.37\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{X} 1 \mathrm{X}_{1}}\right), 1.57$ $\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Y}}, J_{\mathrm{X}, \mathrm{Y}} 6.9\right), 1.83\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{NN}^{\prime}}\right), 1.88\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{MM}^{\prime}}\right), 2.94$ ($1 \mathrm{H}, \mathrm{H}_{\mathrm{A} 1}$) (AMM'NN'XX'Y system, carbocycle), 2.43, 2.48 (8 H , broad unsplit, $\mathrm{H}_{\mathrm{X} 2 \times 2^{\prime} \times 3 \times 3^{\prime}}$), 3.67 (4 H , broad unsplit,
 (morpholines).

Monohydrotrifluoromethanesulfonates of the Diamines $\mathbf{6 b}$ and 7b.-General procedure. A solution of diamine $(0.5 \mathrm{mmol} ; \mathbf{6 b} / 7 \mathbf{b}$: 126.2 mg) in acetonitrile ($20 \mathrm{~cm}^{3}$) was exactly titrated with trifluoromethanesulfonic acid ($0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in propan-2-ol) with a titration apparatus. The reaction mixture sas sti, red at room temperature for 30 min . Removal of the solvent in bucuo, trituration of the residue with diethyl ether $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and drying of the residue in vacuo gave pure ammonium salts in quantitative yield.

4- $\{(1 \alpha, 3 \beta, 5 \alpha, 6 \beta)-6-$ Morpholinobicyclo[3.1.0]hexan-3-yl\}morpholinium trifluoromethanesulfonate 13. M.p. $168^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 44.7 ; \mathrm{H}, 6.2 ; \mathrm{N}, 6.9 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires C , 44.77; H, 6.26; N, 6.96%).

4-\{(1 $, 3 \alpha, 5 \alpha, 6 \beta)-6-M o r p h o l i n o b i c y c l o[3.1 .0]$ pexan-3-yl\}morpholinium trifluoromethanesulfonate 14. M.p. $185^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 44.7$; $\mathrm{H}, 6.2$; $\mathrm{N}, 7.1 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 44.77 ; \mathrm{H}$, $6.26 ; \mathrm{N}, 6.96 \%$).
X-Ray Structure Analysis of $\mathbf{6 c}$.-Single crystals were obtained from an ethereal solution of $\mathbf{6 c} .^{12}$

Crystal data. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}, M=277.4$. Monoclinic, $a=$ 8.272(3), $b=12.397(4), c=14.829(4) \AA ; \beta=90.42(4)^{\circ}, V=$
$1520.7(8) \AA^{3}$; space group $P 2_{1} / c, Z=4, D_{\mathrm{x}}=1.211 \mathrm{~g} \mathrm{~cm}^{-3}$. Colourless crystal. Crystal dimensions $0.6 \times 0.3 \times 0.7 \mathrm{~mm}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.76 \mathrm{~cm}^{-1}$.

Data collection and processing. Enraf-Nonius CAD4 diffractometer, $\omega / 2 \theta$ mode with ω scan width $=0.85+0.35$ $\tan \theta, \omega$ scan speed $1.66-4.0 \mathrm{deg} \mathrm{min}^{-1}$, graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation; 2604 reflections measured ($2.0<\theta<24.0^{\circ}$), 2501 unique [merging $R=0.045$], giving 1710 with $I<2.2 \sigma(I)$.

Structure analysis and refinement. The structure was solved by direct methods. Refinement was performed by a full-matrix-least-squares program. Hydrogen atoms were localized in a ΔF map and refined with isotropic temperature factors. Refinement converged at $R=0.0429$ and $R_{\mathrm{w}}=0.0384$, weighting scheme: $w=4 F_{\mathrm{o}}^{2} /\left[\sigma(I)^{2}+\left(P F_{\mathrm{o}}{ }^{2}\right)^{2}\right] \quad(P=0.015)$. The largest shift $/$ error ratio at this stage was <0.06. The residual electron density was <0.13. ${ }^{24 . *}$

Acknowledgements

Support of this work by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Additionally the work was sponsored by the Fonds der Chemischen Industrie.

* Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. For details of the deposition scheme see 'Instructions for Authors (1993),' J. Chem. Soc., Perkin Trans. 2, 1993, issue 1.

4 R. Okazaki, J. Niwa and S. Kato, Bull. Chem. Soc. Jpn., 1988, 61, 1619.
5 K. Siam, J. D. Ewbank, L. Schäfer and C. van Alsenoy, J. Mol. Struct., 1987, 150, 121.
6 P. J. Mjöberg and J. Almlöf, Chem. Phys., 1978, 29, 201.
7 P. N. Skancke, J. Mol. Struct., 1982, 86, 255.
8 E. Ösawa, G. Szalontai and A. Tsurumoto, J. Chem. Soc., Perkin Trans. 2, 1983, 1209.
9 P. Aped and N. L. Allinger, J. Am. Chem. Soc., 1992, 114, 1.
10 M. Traetteberg, P. Bakken, R. Seip and D. Whittaker, J. Mol. Struct., 1984, 116, 119.
11 V. Hach, R. F. Raimondo, D. M. Cartlidge and E. C. McDonald, Tetrahedron Lett., 1970, 3175.
12 E. Vilsmaier, J. Fath and G. Maas, Synthesis, 1991, 1142.
13 E. Vilsmaier, Bull. Soc. Chim. Belg., 1985, 94, 521.
14 E. Vilsmaier, C. M. Klein and W. Tröger, Chem. Ber., 1982, 115, 2795.
15 H.-O. Kalinowski, S. Berger and S. Braun, ${ }^{13}$ C-NMR-Spektroskopie, Thieme, Stuttgart, 1984, p. 447.
16 J. J. Christensen, R. M. Izatt, D. P. Wrathall and L. D. Hansen, J. Chem. Soc. A, 1969, 1212.
17 H.-O. Kalinowski, S. Berger and S. Braun, ${ }^{13}$ C-NMR-Spektroskopie, G. Thieme, Stuttgart, 1984, p. 323.

18 LAOKOON III Fortran Version by G. A. Morris, Dept. of Chemistry, University of Manchester, UK; Atari-ST-Version: R. Paape, Bremen, Germany.
19 J. C. Rees and D. Whittaker, Org. Magn. Reson., 1981, 15, 363.
20 R. Schwesinger, Nachr. Chem. Techn. Lab., 1990, 38, 1214.
21 H. Bock, T. Vaupel, C. Näther, K. Ruppert and Z. Havlas, Angew. Chem., 1992, 104, 348; Angew. Chem., Int. Ed. Engl., 1992, 31, 299.
22 V. Butz, E. Vilsmaier and G. Mass, J. Chem. Soc., Perkin Trans. 2, 1993, 1907.
23 H. Günther, NMR-Spektroskopie, G. Thieme, Stuttgart, 1992, p. 91 .

24 All calculations were done with the program package MolEm (Enraf-Nonius, Delft, The Netherlands).

References

1 Part 10, V. Butz and E. Vilsmaier, Tetrahedron, 1993, 49, 6031.
2 V. S. Mastryukov, J. Mol. Struct., 1991, 244, 291.
Paper 3/02055J
3 V. S. Mastryukov, E. L. Osina, L. V. Vilkov and R. L. Hilderbrand,
J. Am. Chem. Soc., 1977, 99, 6855.

Received 8th April 1993
Accepted 1st June 1993

